Home » Cazzy Medley » Page 5

Author: Cazzy Medley

An Air Quality Model That Is Evolving with the Times

ESSIC Scientist Min Huang is first author on a new article published in Eos, the American Geophysical Union’s science magazine. The article, titled “An Air Quality Model That Is Evolving with the Times”, discusses how the Sulfur Transport and Deposition Model (STEM) continues to find new applications and value in environmental science and policy making.

Read More »
Figure 1. Biases of accumulated precipitation (mm) relative to the MRMS ground-based analysis of the five machine learning models studied during the period of 1 May to 30 September, 2022. Biases of the operational MiRS algorithm are also shown in the bottom right panel.

Using Machine Learning to Improve Microwave-Based Precipitation Estimates

ESSIC/CISESS scientist Chris Grassotti along with CIRA and NOAA researchers Shuyan Liu and Quanhua (Mark) Liu, recently published a paper in the IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing titled “Warm-Season Microwave Integrated Retrieval System (MiRS) Precipitation Improvement Using Machine Learning Methods”.

Read More »
A schematic diagram describing the impacts of cloud-surface-coupling on the aerosol-cloud-interaction. When a cloud is coupled with the surface, a cloud is formed near the top of the planetary boundary-layer (PBL) that interacts strongly with the well-mixed aerosol, whereas they have little interaction under decoupled conditions. As aerosol alters cloud microphysics (more aerosol leads to more cloud droplets of smaller particle size that makes cloud brighter), solar radiation reflected by cloud is more under coupled conditions than under decoupled conditions, or a stronger cooling effect as indicated by the orange arrows. As a result, lack of accounting for the cloud-surface coupling tends to result in an underestimation of aerosol indirect radiative forcing, which is likely a major contributing factor to the systematic discrepancies between observation-based and model-based estimate of the aerosol cooling effect. Adapted from Su et al. (2024, Sci. Adv.).

Aerosols Affect Climate More Than We Think

A key to improve climate prediction is to improve understanding of the impact of aerosol on clouds, or commonly known as the aerosol-cloud-interaction according to a new study led by Earth System Science Interdisciplinary Center (ESSIC) researchers published today in Science Advances.

Read More »

ESSIC at Maryland Day 2024

On Saturday, April 27, ESSIC faculty and staff gathered to celebrate Maryland Day, the University of Maryland’s largest community outreach event! This was the 26th year that the university held the event, and the 24th time that ESSIC has participated.

Read More »